2214(a)

THE UNIVERSITY OF SYDNEY

CHEM1405 - CHEMISTRY (VETERINARY SCIENCE)

FIRST SEMESTER EXAMINATION

CONFIDENTIAL

JUNE 2010

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY	SID	
NAME	NUMBER	
OTHER	TABLE	
NAMES	NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 22 pages of examinable material.
- Complete the written section of the examination paper in <u>INK</u>.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new short answer question begins with a •.
- Only non-programmable, Universityapproved calculators may be used.
- Students are warned that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheets.
- Page 24 is for rough working only.

OFFICIAL USE ONLY

Short answer section

	Marks			
Page	Max	Gained		Marker
11	6			
12	5			
13	3			
14	4			
15	7			
16	5			
17	4			
18	6			
19	7			
20	6			
21	6			
22	5			
23	5			
Total	69			

• Explain what is meant by hybridisation of atomic orbitals.	Marks
	-
• Carbon has atomic number <i>Z</i> = 6. What is the ground state electron configuration for an atom of carbon?	5
What compound would you expect to form between a carbon atom with that electron configuration and hydrogen, <i>i.e.</i> what is the value of x in the formula CH _x ? Explain.	
	-
What shape would that molecule have? Explain.	_
What molecule forms instead? Explain.	

5

• Stearic acid, C₁₈H₃₆O₂, is a fatty acid common in animal fats and vegetable oils and is a valuable energy source for mammals. The net reaction for its metabolism in humans is:

$$C_{18}H_{36}O_2(s) + 26O_2(g) \rightarrow 18CO_2(g) + 18H_2O(l)$$

Calculate ΔH° for this reaction given the following heats of formation.

Calcula		action given the re	bildwing nears of	iormation.	_
	Compound	C ₁₈ H ₃₆ O ₂ (s)	$CO_2(g)$	H ₂ O(l)	
	$\Delta_{\rm f} H^{\circ} / {\rm kJ} { m mol}^{-1}$	-948	-393	-285	
				•	<u>.</u>
		F			

If the combustion of stearic acid is carried out in air, water is produced as a vapour. Calculate the ΔH° for the combustion of stearic acid in air given that:

$$H_2O(l) \rightarrow H_2O(g) \qquad \Delta H^\circ = +44 \text{ kJ mol}^{-1}$$

 $\Delta H^{\circ} =$

 $\Delta H^{\circ} =$

Will ΔS be different for the two oxidation reactions? If so, how will it differ and why?

Calculate the mass of carbon dioxide produced by the complete oxidation of 1.00 g of stearic acid.

Answer:

3

• Consider the two triprotic acids, phosphoric acid and citric acid.

	$ \begin{array}{c} \text{OH} \\ \text{O} = \stackrel{ }{P} - \text{OH} \\ \text{OH} \\ \end{array} $	$HO - C - COOH$ $HO - C - COOH$ $C H_2 COOH$			
Acid Formula		K _{a1}	K _{a2}	K _{a3}	
phosphoric H ₃ PO ₄		7.1×10^{-3}	6.3×10^{-8}	4.5×10^{-13}	
citric	C ₆ H ₈ O ₇	$7.1 imes 10^{-4}$	1.7×10^{-5}	6.4×10^{-6}	

Explain why $K_{a1} > K_{a2} > K_{a3}$ for both acids.

For phosphoric acid, the K_a values differ by about 5 orders of magnitude while for citric acid there is a much smaller difference. Explain.

• Henry's law relates the solubility of a gas to its pressure. <i>i.e.</i> $c = kp$			
5 L of blood, calculate the maximum amo	8 K is 6.8×10^{-4} mol L ⁻¹ atm ⁻¹ . A diver 5 atm. If the diver's body contains about bount of nitrogen gas dissolved in the diver's lubility of nitrogen in water and blood to be		
1 atm:	5 atm:		
	5 atm: denly released, what volume would it occupy		
If all the gas dissolved at 5 atm were sude			
If all the gas dissolved at 5 atm were sude			
If all the gas dissolved at 5 atm were sude			
If all the gas dissolved at 5 atm were sude			
If all the gas dissolved at 5 atm were sude			
If all the gas dissolved at 5 atm were sude			
If all the gas dissolved at 5 atm were sude			

A buffer system with a weak base B and its conjugate acid HB⁺ is shown in the diagram below with equal concentrations. Complete the diagram by showing the relative concentrations after the addition of some HCl or NaOH.
 HCl HB⁺ B NaOH
 Write down the balanced net ionic equations for both these reactions.

pH =

What is the pH if (a) 0.05 mol of HCl(g) and (b) 0.25 mol of HCl(g) is added?

(a) pH = (b) pH =

2

• The radioactive isotope ^{99m}Tc has a half life of 6.0 hours. How much time after production of the ^{99m}Tc isotope do radiologists have to examine a patient if at least 35 % of the original activity is required to get useful exposures?

Answer:

• Consider the following *unbalanced* reaction at 25 °C:

$$\operatorname{Fe}^{3+}(\operatorname{aq}) + \operatorname{Sn}^{2+}(\operatorname{aq}) \rightarrow \operatorname{Fe}^{2+}(\operatorname{aq}) + \operatorname{Sn}^{4+}(\operatorname{aq})$$

Calculate the standard cell potential.

Answer:

Calculate the equilibrium constant, *K*, for the reaction at 25 °C.

Answer:

Page Total:

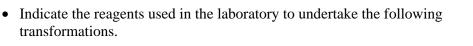
3

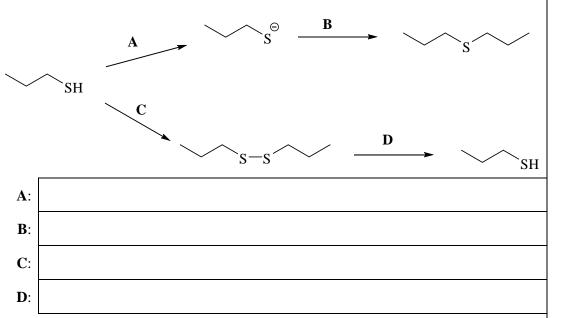
• The observed geometry of the N atom in H₂NCOCH₃ is trigonal planar. Draw a Lewis structure consistent with this observation and explain this observation.

Marks 2

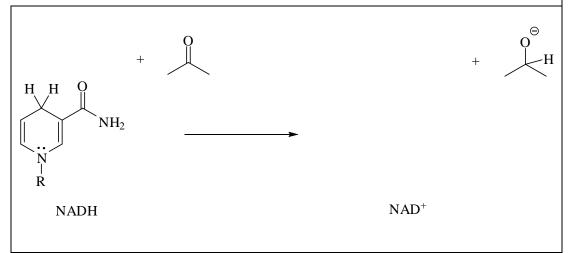
2

• The reaction $2A + B \rightarrow C + 3D$ has reached equilibrium. What is the expression for the equilibrium constant, K_c ?


Explain how the equilibrium constant, K_c , changes when more C is added to the reaction mixture.

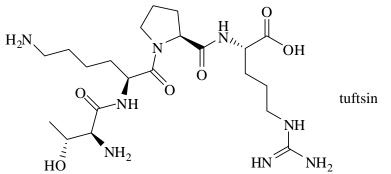

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

CHEM1405


• Complete the following table.				
STARTING MATERIAL	REAGENTS/ CONDITIONS	CONSTITUTIONAL FORMULA(S) OF MAJOR ORGANIC PRODUCT(S)		
	HCl / CCl ₄ solvent			
ОН				
CH ₃ CH ₂ CHCH ₂ CH ₃ Br		$\begin{array}{c} CH_{3}CH_{2}CHCH_{2}CH_{3}\\ Br \overset{\Theta \oplus 1}{}N(CH_{3})_{3}\end{array}$		
HO H	$\operatorname{Cr}_2\operatorname{O_7}^{2\Theta}/\operatorname{H}^{\oplus}$			
	3 M NaOH / heat			
H O OH	catalytic H^{\oplus}			

4

- NADH is the most important reducing agent in Nature. It is itself oxidised to NAD⁺. Complete the scheme below by:
 - (a) drawing in curly arrows to show the movement of electrons during the first step in the reduction of acetone with NADH, and
 - (b) drawing the structure of NAD^+ .

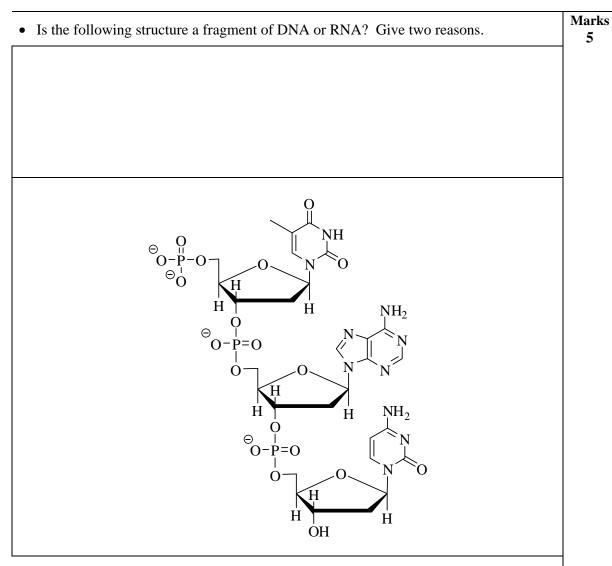


THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

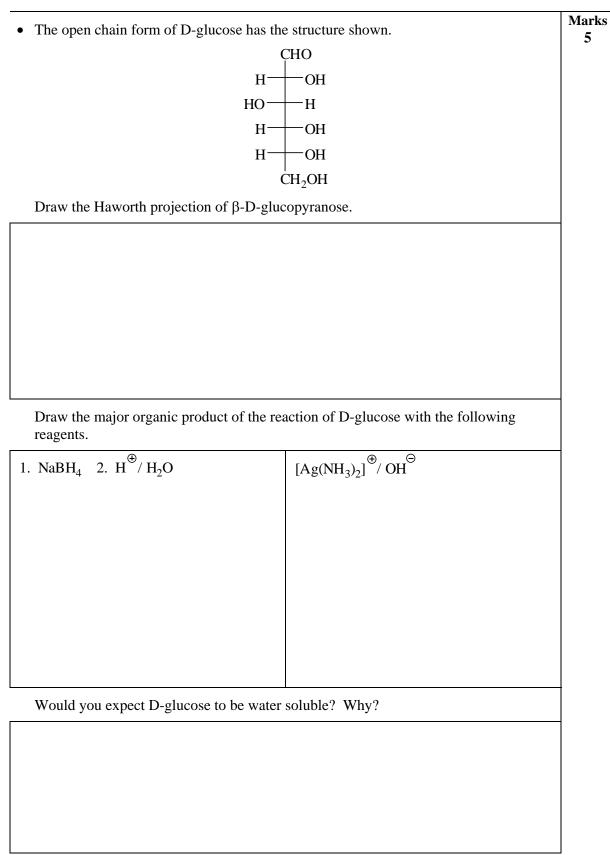
3

6

• Tuftsin is a tetrapeptide (Thr-Lys-Pro-Arg) produced by enzymatic cleavage of the Fc-domain of the heavy chain of immunoglobulin G. It is mainly produced in the spleen and its activity is related primarily to immune system function.



Draw the Fischer projections of the four L-amino acids that result from the acid hydrolysis of tuftsin.


THIS QUESTION CONTINUES ON THE NEXT PAGE.

What is the major species present when ly and pH 5.6. The pK_a values of lysine are 10.53 (side chain).	ysine (Lys) is dissolved in water at pH 12 1.82 (α -COOH), 8.95 (α -NH ₃ ^{\oplus}) and	Marks 4
pH 12	рН 5.6	
Give the constitutional formulas for the		_
states. The p <i>K</i> _a values of proline are 1.95 Lys-Thr	5 and 10.64.	
Pro-Lys		
• Glycine, NH ₂ CH ₂ COOH, is the simplest of has a melting point of 238 °C, while CH ₃ Give one reason for this difference.	of the naturally occurring amino acids. It CH_2COOH has a melting point of -21 °C.	2

Clearly identify on the above structure one example of each of the following subunits.

- nucleic base
- nucleoside
- nucleotide

CHEM1405 - CHEMISTRY (VETERINARY SCIENCE)

DATA SHEET

 $Physical \ constants$ Avogadro constant, $N_{\rm A} = 6.022 \times 10^{23} \ {\rm mol}^{-1}$ Faraday constant, $F = 96485 \ {\rm C} \ {\rm mol}^{-1}$ Planck constant, $h = 6.626 \times 10^{-34} \ {\rm J} \ {\rm s}$ Speed of light in vacuum, $c = 2.998 \times 10^8 \ {\rm m} \ {\rm s}^{-1}$ Rydberg constant, $E_{\rm R} = 2.18 \times 10^{-18} \ {\rm J}$ Boltzmann constant, $k_{\rm B} = 1.381 \times 10^{-23} \ {\rm J} \ {\rm K}^{-1}$ Permittivity of a vacuum, $\varepsilon_0 = 8.854 \times 10^{-12} \ {\rm C}^2 \ {\rm J}^{-1} \ {\rm m}^{-1}$ Gas constant, $R = 8.314 \ {\rm J} \ {\rm K}^{-1} \ {\rm mol}^{-1}$ Charge of electron, $e = 1.602 \times 10^{-19} \ {\rm C}$ Mass of electron, $m_{\rm e} = 9.1094 \times 10^{-31} \ {\rm kg}$ Mass of proton, $m_{\rm p} = 1.6726 \times 10^{-27} \ {\rm kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L Volume of 1 mole of ideal gas at 1 atm and 0 °C = 22.4 L Density of water at 298 K = 0.997 g cm⁻³

Conversion factors

1 atm = 760 mmHg = 101.3 kPa	$1 \text{ Ci} = 3.70 \times 10^{10} \text{ Bq}$
0 °C = 273 K	$1 \text{ Hz} = 1 \text{ s}^{-1}$
$1 L = 10^{-3} m^3$	1 tonne = 10^3 kg
$1 \text{ Å} = 10^{-10} \text{ m}$	$1 \text{ W} = 1 \text{ J s}^{-1}$
$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$	

Decimal fractions		Deci	Decimal multiples		
Fraction	Prefix	Symbol	Multiple	Prefix	Symbol
10^{-3}	milli	m	10 ³	kilo	k
10^{-6}	micro	μ	10^{6}	mega	Μ
10^{-9}	nano	n	10 ⁹	giga	G
10^{-12}	pico	р			

CHEM1405 - CHEMISTRY (VETERINARY SCIENCE)

Standard Reduction Potentials, E°						
Reaction	E° / V					
$\mathrm{Co}^{3+}(\mathrm{aq}) + \mathrm{e}^{-} \rightarrow \mathrm{Co}^{2+}(\mathrm{aq})$	+1.82					
$\operatorname{Ce}^{4+}(\operatorname{aq}) + \operatorname{e}^{-} \rightarrow \operatorname{Ce}^{3+}(\operatorname{aq})$	+1.72					
$MnO_4^{-}(aq) + 8H^+(aq) + 5e^- \rightarrow Mn^{2+}(aq) + 4H_2O$	+1.51					
$\operatorname{Au}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Au}(s)$	+1.50					
$Cl_2 + 2e^- \rightarrow 2Cl^-(aq)$	+1.36					
$O_2 + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23					
$Pt^{2+}(aq) + 2e^{-} \rightarrow Pt(s)$	+1.18					
$MnO_2(s) + 4H^+(aq) + e^- \rightarrow Mn^{3+} + 2H_2O$	+0.96					
$NO_3^-(aq) + 4H^+(aq) + 3e^- \rightarrow NO(g) + 2H_2O$	+0.96					
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92					
$Ag^+(aq) + e^- \rightarrow Ag(s)$	+0.80					
$\mathrm{Fe}^{3+}(\mathrm{aq}) + \mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})$	+0.77					
$Cu^+(aq) + e^- \rightarrow Cu(s)$	+0.53					
$\mathrm{Cu}^{2+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s})$	+0.34					
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15					
$2\mathrm{H}^{+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{g})$	0 (by definition)					
$\operatorname{Fe}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Fe}(s)$	-0.04					
$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.13					
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}(s)$	-0.14					
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$	-0.24					
$Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$	-0.40					
$Fe^{2+}(aq) + 2e^- \rightarrow Fe(s)$	-0.44					
$\operatorname{Cr}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Cr}(s)$	-0.74					
$\operatorname{Zn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Zn}(s)$	-0.76					
$2H_2O + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$	-0.83					
$\operatorname{Cr}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Cr}(s)$	-0.89					
$Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$	-1.68					
$Mg^{2+}(aq) + 2e^- \rightarrow Mg(s)$	-2.36					
$Na^+(aq) + e^- \rightarrow Na(s)$	-2.71					
$Ca^{2+}(aq) + 2e^{-} \rightarrow Ca(s)$	-2.87					
$\text{Li}^+(\text{aq}) + e^- \rightarrow \text{Li}(s)$	-3.04					

CHEM1405 - CHEMISTRY (VETERINARY SCIENCE)

U sejui formulas								
Quantum Chemistry	Electrochemistry							
$E = hv = hc/\lambda$	$\Delta G^{\circ} = -nFE^{\circ}$							
$\lambda = h/mv$	Moles of $e^- = It/F$							
$E = -Z^2 E_{\rm R}(1/n^2)$	$E = E^{\circ} - (RT/nF) \times 2.303 \log Q$							
$\Delta x \cdot \Delta(mv) \ge h/4\pi$	$= E^{\circ} - (RT/nF) \times \ln Q$							
$q = 4\pi r^2 \times 5.67 \times 10^{-8} \times T^4$	$E^{\circ} = (RT/nF) \times 2.303 \log K$							
$T \lambda = 2.898 \times 10^6 \text{ K nm}$	$= (RT/nF) \times \ln K$							
	$E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at 25 °C)}$							
Acids and Bases	Gas Laws							
$pK_{\rm w} = pH + pOH = 14.00$	PV = nRT							
$\mathbf{p}K_{\mathrm{w}} = \mathbf{p}K_{\mathrm{a}} + \mathbf{p}K_{\mathrm{b}} = 14.00$	$(P + n^2 a/V^2)(V - nb) = nRT$							
$pH = pK_a + \log\{[A^-] / [HA]\}$	$E_{\rm k} = \frac{1}{2}mv^2$							
Radioactivity	Kinetics							
$t_{1/2} = \ln 2/\lambda$	$t_{\frac{1}{2}} = \ln 2/k$							
$A = \lambda N$	$k = A e^{-E_a/RT}$							
$\ln(N_0/N_t) = \lambda t$	$\ln[\mathbf{A}] = \ln[\mathbf{A}]_0 - kt$							
14 C age = 8033 ln(A_0/A_t) years	$\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$							
Colligative Properties & Solutions	Thermodynamics & Equilibrium							
$\Pi = cRT$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$							
$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$	$\Delta G = \Delta G^{\circ} + RT \ln Q$							
$\mathbf{c} = k\mathbf{p}$	$\Delta G^{\circ} = -RT \ln K$							
$\Delta T_{ m f} = K_{ m f} m$	$\Delta_{\rm univ}S^\circ = R\ln\!K$							
$\Delta T_{\rm b} = K_{\rm b} m$	$K_{\rm p} = K_{\rm c} \left(RT \right)^{\Delta n}$							
Miscellaneous	Mathematics							
$A = -\log \frac{I}{I_0}$	If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$							
$A = \varepsilon c l$	$\ln x = 2.303 \log x$							
$E = -A \frac{e^2}{4\pi\varepsilon_o r} N_{\rm A}$	Area of circle = πr^2							
$4\pi\varepsilon_0 r^{1/A}$	Surface area of sphere = $4\pi r^2$							

Useful formulas

1	2	3	4	5	6	7	8	9	10	11	12		13	14	15	16	17	18
1 нудгоден Н 1.008		_																2 неши Не 4.003
3 LITHIUM	4 BERYLLIUM												5 boron	6 CARBON	7 NITROGEN	8 oxygen	9 FLUORINE	10 NEON
Linnow	Be												B	CARBON	NIROGEN	ONIGEN	F	Ne
6.941	9.012												10.81	12.01	14.01	16.00	19.00	20.18
11 sodium	12 magnesium												13 ALUMINIUM	14 SILICON	15 PHOSPHORUS	16 SULFUR	17 CHLORINE	18 Argon
Na	Mg											2	Al	Si	PHOSPHORCS	SOLFOR	Cl	Ar
22.99	24.31												26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30		31	32	33	34	35	36
POTASSIUM K	CALCIUM Ca	SCANDIUM SCANDIUM	TITANIUM Ti	VANADIUM V	CHROMIUM Cr	MANGANESE Mn	IRON Fe	COBALT	NICKEL Ni	COPPER Cu			GALLIUM Ga	GERMANIUM Ge	ARSENIC AS	selenium Se	BROMINE Br	KRYPTON Kr
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.3		69.72	72.59	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48		49	50	51	52	53	54
RUBIDIUM Rb	strontium Sr	YTTRIUM Y	zirconium Zr	NIOBIUM Nb	MOLYBDENUM MO	TECHNETIUM TC	RUTHENIUM Ru	RHODIUM Rh	PALLADIUM Pd	SILVER Ag	САДМИ		indium In	Sn	ANTIMONY Sb	TELLURIUM Te	IODINE	xenon Xe
85.47	87.62	88.91	91.22	92.91	95.94	[98.91]	101.07	102.91	106.4	107.87	112.		114.82	118.69	121.75	127.60	126.90	131.30
55	56	57-71	72	73	74	75	76	77	78	79	80		81	82	83	84	85	86
CAESIUM CS	BARIUM Ba		HAFNIUM Hf	TANTALUM Ta	TUNGSTEN	RHENIUM Re	OSMIUM OS	iridium Ir	PLATINUM Pt		MERCU		THALLIUM	LEAD Pb	BISMUTH Bi	POLONIUM PO	ASTATINE At	RADON Rn
132.91	137.34		178.49	180.95	183.85	186.2	190.2	192.22	195.09	196.97	200.		204.37	207.2	208.98	[210.0]	[210.0]	[222.0]
87	88	89-103 104		105	106	107	108	109	110	111	11							<u> </u>
FRANCIUM Fr	radium Ra		RUTHERFORDIU Rf	dubnium Db	seaborgium Sg	BOHRIUM Bh	HASSIUM HS	MEITNERIUM Mt	DARMSTADTIUM	roentgenium Rg	i coperni							
[223.0]	[226.0]		[261]	[262]	[266]	[262]	[265]	[266]	[271]	[272]	[28]							
		7	58	59	60	61	62	63	64		65	66		67	68	69	70	71
LANTHANO	IDS LANTE	IANUM	CERIUM P	raseodymium Pr	NEODYMIUM Nd	PROMETHIUM Pm	samarium Sm	EUROPIUM Eu	GADOLIN GADOLIN		^{квіим}	DYSPRO DYSPRO		HOLMIUM HO	ERBIUM Er	THULIUM Tm	VTTERBIUM Yb	LUTETIUM Lu
	138		40.12	140.91	144.24	[144.9]	150.4	151.96			8.93	162.		164.93	167.26	168.93	173.04	174.97
		89		91	92	93	94	95	96		97	98		99	100	101	102	103
ACTINOID		NIUM C	HORIUM PR	rotactinium Pa	URANIUM U	NEPTUNIUM Np	PLUTONIUM Pu	AMERICIUM Am	CURIC		^{kellium}	CALIFOF		INSTEINIUM Es	FERMIUM Fm	MENDELEVIUM M	NOBELIUM NO	LAWRENCIUM
	[22]		232.04	[231.0]	238.03	[237.0]	[239.1]	[243.1]						252.1]	[257.1]	[256.1]	[259.1]	[260.1]

PERIODIC TABLE OF THE ELEMENTS